METHOD OF DETERMINING PROCESS
DYNAMICS

by

Wen-tung Kuo

Lecturer in Chemical Engineering

Tunghai University

I. INTRODUCTION

There are two basic problems in process dynamics;
1. the prediction of the response of a known process to a known input signal,
2. the determination of the dynamic characteristics of an unknown process through the measurement
of its response to a certain signal.

Both these basic problems can be approached by using the same mathematical tools, the
mathematics of linear dynamic systems. It is, however, necessary to make some rather drastic
assumptions about the dynamic nature of the process under question to use these tools rigorously.
The basic assumption is that of local linearity. Most processes are non-linear in nature, hence
the applicability of linear analysis is limited to the study of local behavior, under a small
disturbance.

Throughout this paper we shall consider a general process consisting of a single input

variable and a single output variable related through a linear dynamical process as illustrated in
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Figure 1.

Fig. 1. Block diagram of a linear systems

This process operator takes the mathematical form of an nth-order ordinary linear differential

equation with constant coefficients which is denoted by,
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This representation is not always the most convenient to use in practice and three equivalent

methods of description can be used, the transfer function, the frequency response and the weighting

function method. These alternate methods are discussed in the following sections.

II. The Transfer Function

A considerable body of knowledge has been developed, using the transfer function as a means
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of describing the dynamics of a process. The transfer functions is used most extensively in the
analysis and synthesis of control system. The transfer function is related to the differential equation
mathematically by the Laplace transfer operator as shown in the following way.

We multiply both sides of equation (1) by ¢™* and integrate from #=0 to t=oc0. Then let

denote,
Jlem 5o dr=Y(s),
f :c‘ () de=X(s)
and by partial integration for each term,
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where the initial conditions are specified as,

Yo= (=0

yo(““——-(%)::o

e 1>_~< dt" 2 Y20
Then equation (1) together with the initial conditions (2) can be written as,
(ans®+an-15""14 -+ ;s +a) Y () =X()
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Hence ¥ we define the polynominals D(s) and N(s) as,
D(s)=ans” +an1s" "+ +tas+ag €))
and
N()=an o5 (@nyo +an-130,0° 24
(@0 " Fanaa P A a2y ) 6))
then the Laplace transformed solution of equation (3) can be written in simpler form as,
Y= PR+ B ®

We note that the second term of the equation depends on the initial condition of which represent
the heredity of motion as it stated in the clasic mechanics while the first term represents its new
environment under the forcing function x(#) or its transformed function X(s). N(s) is at most
of order (n—1)th and is thus a lower order than D(s). It will vanish i all the initial values
specified by equation (2) vanish. That is the case of asumming steady state exist before the cause
of change x(¢) is applied. Therfore the output Y(s), the Laplace transformed y(2), is only related
to input X(s). The ratio of output to the input is called transfer function FF(s), which is characterized

by the polynominal D(s) given by equation (4).
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Usually, it has specific mathematical form finding from process dynamic analysis, but it does
express the signal size and time effect by comparing the incoming and outgoing signal actually,
and measure out some characteristic value to fit the standard form of the solution of the
differential equation.

The advantage of using transfer function by the Laplace transform method is thus to reduce
a problem in differential ejuation to one of algebraic operation. The step of going from Y(s) to
¥(¢) is seldom necessary, because the behavior of y(¢) is fully determined by Y(s). Thus it is
possible to translate the engineering requirements on y(#) to a set of requirements on Y(s), or
with the input characteristics specified, to a set of requirements on F(s), the transfer function.

The parameter s in the Laplace transform is a complex variable, it can be any value in the
complex plane. The most convenient s is the origin. Then,

FO)=K
has a physical meaning, that is the size ratio of output to input steady signal, actualy it is the gain
of the system.

The transfer function F(s) is essentially determined for any s. Therefor another significant s
is on the imaginary axis, s=jo, where w is real. For physical systems, the coefficient in the F(s)
are all real. Then assuming the complex function of F(jw) can be expressed as the sum of its
real and imaginary parts.

F(jw)=u+jv
where # and v are function of w. since real parts will contain » only as (jw)? or (jw)! and so
on, the same # and v can be used to express F(—jw) as,

F(jo)=u—jv
because only v which contain (jo) or (jw)® and so on will change the sign. Therefore F(—jw)
is the complex conjugate pair of F(jw), so the knowledge of F(jw) for ©>0 will be enough to
discribe the transfer function. F(jo) for all positive value of w is called the frequency response

of the system.

III. Frequency Response Method

The use of frequency response method to describe actual system has gained wide spread
popularity because of the simplicity in treating complex system by actual dynamic-response
measurements. The complex function F(jo) may take rectangular form as #+jv as stated
before, or it may write as exponential form, Me# or even in polar form M /¢ Where M is the
magnitude ratio of output to input, ¢ is the argument of the vector angle for the specific
frequency w. Usually this angle is negative for actual system and may be called the phase lag and
omit the minus sign. .

The foregoing section shows that frequency response can be easily predicted from transfer
function mathematically. But our subject is the reverse—the determination of a complicated
transfer function by some kind of response data. Of the several way of plotting frequency-response
data, the one is widest current use in the process industry is the Bode plot, Phase angle and
magnitude ratio are plotted separatelly versus freqency on a semilog paper.

The most direct method for obtaining a frequency response of a hardware system is to
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measure the steady-state response to a sinusoidal input of suitable frequencies and amplitudes. If
it is suspected that the system is only approximately linear, the amplitude of the wave is kept
small and care is taken to keep the absolute level of the signal because of the nonlinearity of the
process distor the sine output. Unfortunately, small amplitude leads to low precission to obtain by
the direct method.

A more sophisticated frequency-response system employs a test unit that generats a forcing
voltage of adjustable frequency, amplitude, and average value; accepts the output of the unit being
tested and transduced to voltage; shift its phase in accordance with dial settings; and plots the
output against the input. The phase angle is the setting on the phase dial that gives the inphase
pattern. Amplitude ratio is read directly from the plot. The pattern of the plot also shows various

from linear behavior,

IV. Frequency Response from Pulse Testing

A more practical method of obtaining a frequency response is to analyze the transient response
of the process output to a shaped pulse input. A single transient contains the entire frequency
spectrum and can be obtained in a matter of seconds. For several hundred years it has been known
that all transient wave shape may be considered to be made up of a sum of sinusoidal wave shapes
of various amplitudes and covering the entire frequency band. The basic procedure for converting
transient data from the time to the frequency domain is based on the use of the Fourier integral
which, under certain conditions, enables a time function ¢(¢) transformed into a complex frequency
function G(jw) as,

Gljwd= [ o) et ar
This integtal must be evaluated from time zero to infinity for each frequency w at which G(jo)is
desired. The integration can be accomplished only it the behavior of ¢(2) is known for an infinite
time after the disturbance is initiated. This means that it is necessary for the system to reach a

steady state in some finite time.

From the definitions of the transfer function,

F() = Y(s) _ j‘oy(t)e'“dt
X(s) f:x(t)e‘s‘dt

Now to find the frequency response of the system, substitute jw for s,

F(jw)= M

. (e Itd¢

For e~J/»¢, substitute its equivalent cos ot —J sin of, then,
f:y(t) cos ot dt—j f:y(t)sin wt dt
f:x(t) cos wt dt—j fax(t)sin ot dt

Now for any value of w chosen we have an expression for F(jw), the response to the system

F(jo)=- ¢

would give to sinusoidal forcing of that frequency. But here it is in the form of two complex
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numbers (the numerator and the denominator). The real parts R and the imaginary parts [ of
these two complex numbers are each an integral of the product of a particular sine or cosine
function of time times input function x(#) and output function y(£), which is known from measu- .
rement. After the numerical integrations have been done, we may express Y (jw) in polar form as
A; /0,, where A is the magnitude of ¢ R24- 72 and 0; is the phase angle tan~! (I/R). This
computation is repeated for the input X(jw) as A;/Z0, and the unknown system frequency response

is then expressed as the ratio of two vector quantities,

3 = Y(jo) _ Ay
FUO= %0y = A,

The magnitude ratio M is the ratio of individual amplitudes, and the phase angle ¢ is the difference

€900 = \eds )

between the individual angles.

There are several practical numerical integration methods that may be used in the evaluation
.of the Fourier integral; One of the most commen is Simpson’s area rule which is used to obtain
the area under the product curve ¢(¢) cos wt and g(£) sin wt by a series of parabolic approximations.
To insure resonable accuracy with this method, the time history of ¢(#) must be evaluated at small
enough time intervals A? so that each cycle of the product curve can be defined by at least eight
measurements. This means that w/\¢, where Af is the time interval between measurements, should
not exceed 45 degree.

A refinement to this basic method introduced first by Filion (1) and later applied by Schu-
macher (2) enables the parabolic approximation to be applied directly to the time function ¢(2)
rather than to the product curve 9(#) cos wt and ¢(£) sin wt. This allows greater accuracy in the
determination of high-frequency components and it is generally posible to obtain resonable
accuracy with wAf as high as 120 degree.

However, if the computation process is systematically programmed for execution by a digital
computer, all that need be done for a given experimental run is to reduce the input and output
curves to two lists of numbers with corresponding time values and feed these into the computer
along with a list of @ values to be used. Out will come a list of |F(jw)| and /F(jw) versus w.
There are special equipment called “Transfer Function Analyzer (3)” designed to report the input
and out put function in digital form directly.

Regardless of integration method used to obtain a frequency response, the geometric shape
of input function has a profound bearing on the frequency range through which reliable transforms
can be obtained and it should be given careful consideration. The Fourier transform of the input
is an indication of the excitation that is applied to the system at any frequency. Two extreme
type of input are the pure step and the pure impulse. The unit step has a transform magnitude
equal to 1/w, thus giving infinite excitation to the zero frequency component at the expense of
higher frequencies. An impulse, on the other hand, has a constant transform magnitude over the

(1) “On A Quadrature Formula for Trigonometric Integrals” by L. N. G. Filion, Proceedings of the Royal
Society of Edinburgh, Scotland, veol. 49 (XLIX) 1928-1929, pp. 38-47.

{2) “Methods of Analyzing Transient Flight Data to Obtain Air-craft Frequency Response” by L. E. S, Schu-
macher WADC Memo. Rep. No. MCRFT- 2268, January 1950.

(3) The Solartron Electric Group LTD. England, Type JM 1600
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entire frequency spectrum. Thus it appears that for most purpose the impulse is a more desirable
type of input and that the step input is effective only at very low frequencies. This fact will used
in a different method of describing process as it will be discussed in the next section.

V. Weighting Function Method

One last method of describing the dynamics behaviour of a linear process is presented. This
method describes the process in terms of its response to a fictional input called the unit impulse.
The unit impulse is the limit of a unit pulse of duration € and intensity 1/e.

Define f(z) as the response of the process to such an impulse at time 7=0. Physically, such
a response can be realized only as a limit of the response to a finite unit pulse. But such a function
J(7) does exist in mathematical sense and can be used to describe the process, which is called
weighting function. It shows how much weight that a pulse input can bring the output change.

Consider the value of the output to the process at time # to be caused by a pulse of intensity
propotional to x(2;) the runing time variable of input, duration A2 This contribution to output
() from the input pulse at time ¢ is [ f(#,—2:)) [@(2:)AZR). The first term is the response to
a unit impulse and the second term is the scale factor which corrects for the fact that the impulse
is not a unit impulse but of intensity x(z:)A2. This summed over all past time give the total
value of y(%).

¥t =§g JCi—2)z(A) A2

which become on the limit as A2—0, and this expression is true for all the time t after the

disturbance. So, we replace #; by t, then,

X
AN
S/ o=
1
0123 ....... . i £ ¢
e N | I
| Figure 2.
so= [ fe-nadd ®

This type of an integral is a convolution integral. Equation (9) is a third way of describing the
process dynamics. :

An alternative form to equation (9) is,

¥D= [ fDalt—Dd2 (10)
Since for any physically realizable process f(x) =0 for <0, so forms,
sD= [T fD 2G-Ddi= [ fDwe-nda (D

are also possible expression for this particular convolution integral.
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We have seen the convolution integral for discribing the cause and effect relations as equation
(11). From statistical approach we have similar expression as

Pr()= [ FDpesle=2)d2 (12)

Where ¢y.(7) represent cross-correlation function of input signal and output response, and ¢zz(z)
is the self-correlation function of input signal. This equation can be writen by power spectral
density,

Dyo(@) =F(jw)+ Dzo(w) 13)
where, Dya(w) == L: Syz(2)e~?odc
and, D)= f_ 7 fus(detode

That is the Fourier transforms of the correlation functions. If we have white noise for input, that
is Dro(@)=0»»(0)=constant, The correlation function is simply as by Lee (4),

Py () = 02(0) + f(z) (14)
But it is impossible to have white noise for the input. Therefore Wiener (5) suggest to use on-off
signal with random frequency as test signal, but it still has difficulty to make such a signal

actualy, so Huffman (6) make a proposal to use M-sequential time series for this purpose.
1 ]
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Figure3. M-series

Let consider a period. of 15/A M-series as shown in Figure 3. The noise level of —¢ to +b
is madie from some switching device, and record the output by an integrating recorder with
switching relay to comput the correlation function of,

1 NA
(@ =ris [ y@®at—ods (15)

On the other side the auto-correlation function may be reduced as,
= 2o [ eatt—oa
¢xx(7)“‘NA b z()z(t—)dt
Fun(T) =_]%7"(”1\L2_I;1_52+N'%02)

for t=nNA, and between the period

_}‘N—*‘l]g N_gng_N-l—l
¢Jw(7)_‘N( 4 b+ 4 C 2 bc)

This correlation could be zero if following relation exist,

(4 Y. W. Lee, “Application of Statistical Methods to Communications Problem”, MIT Research Laboratory
for Electronics Tech. Rep., 181, p.28, 1950.

(5) N. Wiener, “The Spectrum of An Array”, Journal of Madthematics and Physics, MIT, vol. 6, p. 151, 1927.

(6) D. A. Huffman, “The Synthesis of Linear Sequential Coding Networks”, Information Theory Academic
Press. p. 77-95, 1956.
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c YN+ 1
The Fourier transform of the correlation function will be,

Q)wx(w)=N+ 1.6+ C).ZC sin w/\/2 YA

N ~ 2 wN/2
@m(O) :”1\774\}“1‘(2.’5_6')2A

Then from equation (14), (15) and (16),

16

YO :'N}Z fONA y(BD(t—o)dt) NA1ebtey,

N 2

JR

According to Furuta and Izawa (7), the test result were in féirly goad coincidence with the

theory, and this is very useful and promises futurc applications in adaptive control systems.

{7y Furuta and Izawa, “Method of Determining Process Dynamics”, Journal of The SICE, Japan, vol. 3, p.

665, 1964.



> METHOD OF DETERMINING PROCESS
L H DYNAMICS 151

BAESDEZ L E
X %

WL BHAES T TIRERRRF 235, HECHIREIRE 2 R, (FIT 2.

1. EEREAGS TR, AGERF 2D, SARNATOREZ 2R MG ERER T 2. Ik
AR AR,

2. SRR R R 2 R (R R NTRBE 2 .

3. WARFREEAESHE N 2, RLBRREARS, S LURNRRF 2k, R RE R
2%, MEE—fRR TRER, RRRGES; Lo, REENAHIREEH,

4. SRR 2 AAHREE, WEVEBASHT, SoERA, AEGIAEE JEATHMENE, 4%
BB T HB

AR MG MRS,  DUSULEH BB AT 2 00k, BT H AT,

METHOD OF DETERMINING PROCESS DYNAMICS

Wen-tung Kuo

Summary

This paper presents a comparison of four methods for expressing process dynamics applied
to the analysis of a production process. ’
1. The approach using differential equations needs complete knowledge about the whole
process under discussion, but it will give only a basic idea unless it has a solution.
2. Laplace transformed transfer function expresses a process most clearly, but it still requires
the theoretical analysis of the process.
3. The frequency response method does not require the theoretical analysis of the process, so
it is widely used for testing the electrical component or system. However, it has only a
limited use in process analysis because of the slow response and narrow proportionality in
the nature of the process.
4. Correlation function analysis has a promising future in this field, but it requires data-
processing equipment. .
The author has put more cmphasis on the last method by introducing M-sequential time
series testing.



